A Knowledge-based Topic Modeling Approach for Automatic Topic Labeling
نویسندگان
چکیده
Probabilistic topic models, which aim to discover latent topics in text corpora define each document as a multinomial distributions over topics and each topic as a multinomial distributions over words. Although, humans can infer a proper label for each topic by looking at top representative words of the topic but, it is not applicable for machines. Automatic Topic Labeling techniques try to address the problem. The ultimate goal of topic labeling techniques are to assign interpretable labels for the learned topics. In this paper, we are taking concepts of ontology into consideration instead of words alone to improve the quality of generated labels for each topic. Our work is different in comparison with the previous efforts in this area, where topics are usually represented with a batch of selected words from topics. We have highlighted some aspects of our approach including: 1) we have incorporated ontology concepts with statistical topic modeling in a unified framework, where each topic is a multinomial probability distribution over the concepts and each concept is represented as a distribution over words; and 2) a topic labeling model according to the meaning of the concepts of the ontology included in the learned topics. The best topic labels are selected with respect to the semantic similarity of the concepts and their ontological categorizations. We demonstrate the effectiveness of considering ontological concepts as richer aspects between topics and words by comprehensive experiments on two different data sets. In another word, representing topics via ontological concepts shows an effective way for generating descriptive and representative labels for the discovered topics. Keywords—Topic modeling; topic labeling; statistical learning; ontologies; linked open data
منابع مشابه
Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملProsody Modeling for Automatic Speech Recognition and Understanding
This paper summarizes statistical modeling approaches for the use of prosody (the rhythm and melody of speech) in automatic recognition and understanding of speech. We outline effective prosodic feature extraction, model architectures, and techniques to combine prosodic with lexical (word-based) information. We then survey a number of applications of the framework, and give results for automati...
متن کاملSemi-Automatic Terminology Ontology Learning Based on Topic Modeling
Ontologies provide features like a common vocabulary, reusability, machine-readable content, and also allows for semantic search, facilitate agent interaction and ordering & structuring of knowledge for the Semantic Web (Web 3.0) application. However, the challenge in ontology engineering is automatic learning, i.e., the there is still a lack of fully automatic approach from a text corpus or da...
متن کاملDetecting speaker roles and topic changes in multiparty conversations using latent topic models
Accessing and browsing archives of multiparty conversations can be significantly facilitated by labeling them in terms of high level information. In this paper, we investigate automatic labeling of speaker roles and topic changes in professional meetings. Using the framework of unsupervised topic modeling we express speaker utterances as mixture of latent variables, each of which is governed by...
متن کاملCan Selectional Preferences Help Automatic Semantic Role Labeling?
We describe a topic model based approach for selectional preference. Using the topic features generated by an LDA model on the extracted predicate-arguments over the Chinese Gigaword corpus, we show improvement to our state-of-the-art Chinese SRL system by 2.34 F1 points on arguments of nominal predicates, 0.40 F1 point on arguments of verb predicates, and 0.66 F1 point overall. More over, simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017